Mark schemes

1.	(a)	A: transmission / power cables		
		allow transmission / power lines		
		allow cables		
		ignore wires		
			1	
		P: ctop down transformer		
		B: step-down transformer	1	
			1	
	(b)	less thermal energy is transferred to the surroundings.		
			1	
	(a)	shares flow _ 500 000 000		
	(c)	charge flow = $\frac{500\ 000\ 000}{25\ 000}$		
			1	
		charge flow = 20 000 (C)		
			1	
	<i>(</i>)			
	(d)	total current = 7.20 (A)		
			1	
		$P = 230 \times 7.20$		
		allow a correct substitution of an incorrect total current		
			1	
		P = 1656 (W)		
		allow a correct calculation using an incorrect total		
		current	1	
			1	
	(e)	dishwasher		
			1	
		has the largest current		
		or		
		has the largest power (input)		
			1	
	(f)	E = 600 × 32 000 000		
	(1)		1	
			-	
		E = 19 200 000 000 (J)		
		$E = 1.92 \times 10^{10} (J)$	_	
			1	
			[12	1

2.	(a)	increased	1	
		decreased	1	
		stayed the same	1	
	(b)	random error	1	
	(c)	$A_2 = 0.12$ (A)	1	
		$A_5 = 0.36$ (A)	1	
	(d)	$P = 0.12^2 \times 15$	1	
		P = 0.216 (W)	1	
			1	[8]
3.	(a)	ammeter and voltmeter symbols correct	1	
		voltmeter in parallel with wire	1	
		ammeter in series with wire	1	
	(b)	Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.		
		Level 2: The method would not necessarily lead to a valid outcome. Most steps are	5-6	
		identified, but the method is not fully logically sequenced.	3-4	
		Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.		
		No relevant content	1–2	
			0	

Indicative content

- Iength measured
- length varied

•

- current measured
- potential difference measured
- repeat readings
- calculate resistance for each length
 - resistance = potential difference

current

- plot a graph of resistance against length
- hazard: high current
- may cause wire to melt / overheat
- may cause burns (to skin)
- use low currents
- (c) the temperature of the wire would not change
- 1

 (d) the accuracy of the student's results would be higher

 1

 the resolution of the length measurement would be higher

[12]

1

1

1

1

1

1

4. (a)
$$P = \frac{120\,000}{8.0}$$

an answer of 15 000 (W) scores **2** marks

(b) energy is transferred in heating the surroundings

friction causes energy to be transferred in non-useful ways

(c) the switches are in parallel

(so) closing either switch completes the circuit

(d) gravitational potential energy = mass × gravitational field strength × height allow $E_p = m g h$

	(e)	$E_{p} = 280 \times 9.8 \times 14$	1	
		E _p = 38 416 (J)	1	
		E _p = 38 000 (J) an answer that rounds to 38 000 scores 2 marks	-	
			1	
		an answer of 38 000 scores 3 marks	[1	0]
5.	(a)	transfer of <u>electrons</u> mention of positive charge moving negates both marks	1	
		from the carpet to the student	1	
	(b)	three arrows perpendicular to sphere's surface with all arrows directed inwards and distributed evenly around sphere	1	
	(c)	there is a potential difference between the student and the tap do not accept the tap / sink is charged	-	
		which causes electrons / charges to transfer from the student or	1	
		which causes electrons / charges to transfer to the tap	1	
		which earths the charge		
		allow the tap is earthed	1	
	(d)	carpet / copper has a low resistance allow carpet is a conductor or		
		copper is a conductor	1	
		lower / no build-up of charge (on the student) or		
		(so there is a) smaller / no potential difference between student and tap / earth	1	[8]

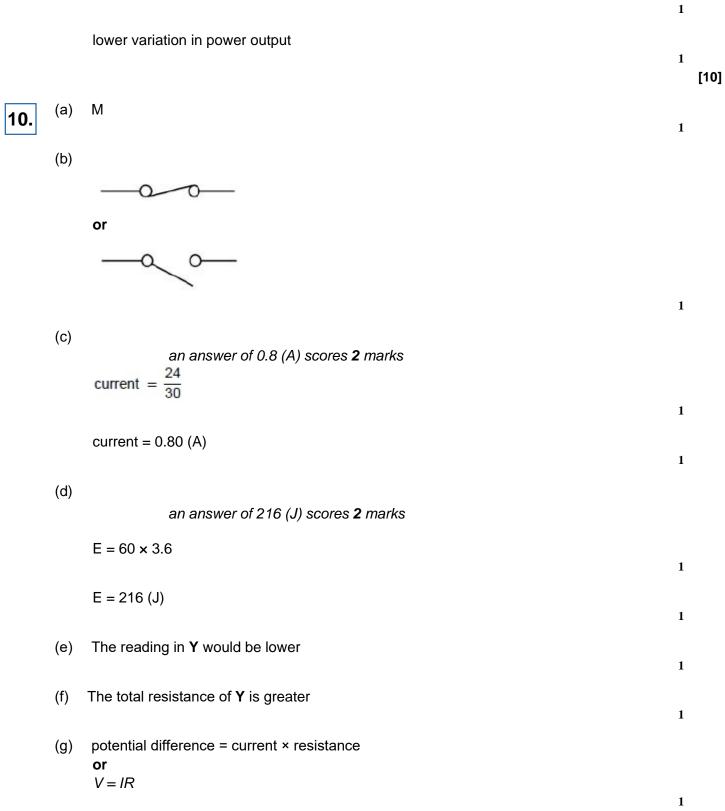
6.	(a)	(fixed) solar cells aren't always pointed (directly) at the Sun		
		or		
		(fixed) solar cells don't track the Sun (through the sky)	1	
		(fixed) solar cells don't (always) receive maximum intensity of solar radiation allow solar cells won't receive as much (solar) energy allow solar cells won't generate as much electricity	1	
	(b)	Q = 3.5 × 3600	1	
		Q = 12 600 (C)	1	
	(c)	efficiency = $\frac{\text{useful power output}}{\text{total power input}}$	1	
	(d)	$0.16 = \frac{\text{useful power output}}{7500}$	1	
		useful power output = 0.16 × 7500	1	
		useful power output = 1200 (W)	1	
	(e)	the energy becomes less useful	1	
	(f)	a very large area would need to be covered with solar cells	1	[10]
7.	(a)	the polarity (of the supply) does not change allow potential difference in one direction (only)	1	
	(b)	energy transferred = power × time	1	

1

8.

(c)	162 000 000 = 7200 ×	t
\		

	$t = \frac{162\ 000\ 000}{7200}$		
	7200	1	
	t = 22 500 (s)	1	
(d)	$V = I \times R$		
(e)	480 = 15 × R	1	
(0)		1	
	$R = \frac{480}{15}$		
	R = 32 (Ω)	1	
(f)	time taken using system A is double the time of system B	1	
		1	[10]
(a)	Level 3 : The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5-6	
	Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.	3-4	
	Level 1 : The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	5 4	
	No relevant content	1–2	
	No relevant content	0	
	Indicative content		
	measure the current in R using the ammeter		
	 measure the p.d. across R using the voltmeter 		
	vary the resistance of the variable resistor (or vary the number of cells or use a variable newer supply)		
	 (or vary the number of cells or use a variable power supply) record a range of values of current and p.d. 		
	ensure current is low to avoid temperature increase		
	switch circuit off between readings		


- reverse connection of **R** to power supply
- repeat measurements of I and V in negative direction
- plot a graph of current against p.d.

9.

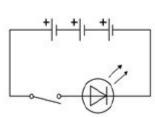
(b)	current and p.d. would not be directly proportional or	
	I-V graph would not be straight	
	or	
	I-V graph would be curved	1
		1
	(because) resistance of R would increase	1
(-)		_
(c)	0.2 (A)	1
(d)	any one from:	
(u)	less chance of misreading	
	no parallax error	
	allow position of eye(s) does not affect reading	
	it can give a reading closer to the true value	
	allow 'it is more accurate'	
	ignore 'no human error' ignore 'easier to read'	
		1 [10]
		[.0]
(a)	K = step-up transformer	1
	L - transmission apples	
	L = transmission cables allow power cables	
	ignore wires	
		1
	M = step-down transformer	
	allow 1 mark if K <u>and</u> M are labelled transformer but step-up and	
	step-down labels are incorrect or not present	
		1
(b)	8 (%) and 32 (%)	
	both required	1
		-
	Number of times = 4	1
(c)	(burning gas) releases earbon diaxida	
(c)	(burning gas) releases carbon dioxide	1
	which causes global warming	
	allow greenhouse effect or climate change	
		1
(d)	An energy resource that can be replenished quickly.	
. /		1

(e) higher power output

allow more electricity generated

[12]

[6]


(h) an answer of 4.5 (Ω) scores **3** marks $3.6 = 0.80 \times R$ 1 $R = \frac{3.6}{0.80}$ 1 $R = 4.5 (\Omega)$ 1 (a) А 11. 1 (b) С 1 (c) repels 1 increases 1 increases 1 in this order only another scientist repeats the experiment and (d) gets the same results 1 The energy transferred each second to the bulb. (a) 12. 1 (b) power = potential difference × current or P = VI1 (C) an answer of 0.17 (A) scores 3 marks $40 = 1 \times 230$ 1 $I = \frac{40}{230}$ 1 I = 0.17 (A)

a correct answer that rounds to 0.17 (A) scores 3 marks

1

(d)	efficiency = $\frac{\text{useful power output}}{\text{total power input}}$	1
(e)	an answer of 2.7 (W) scores 3 marks	
	$0.30 = \frac{\text{useful power output}}{9.0}$	1
	useful power output = 0.30×9.0	1
	useful power output = 2.7 (W)	1
(f)	bulbs also transfer thermal energy allow light bulbs emit infrared radiation as well as visible light ignore so people know how bright the bulb is	1
	the efficiency of the light bulb also needs to be considered allow the cost to power the light bulb depends on the efficiency allow to see how much energy is wasted	1 [11]
(a)		

(b) charge flow = current × time or

$$Q = It$$

1

	(c)	I = 0.050 (A)	1	
		$Q = 0.050 \times 14400$	-	
		allow a correct substitution using an incorrectly/not converted value of I	1	
		Q = 720 (C)	-	
		allow a correct calculation using an incorrectly/not converted value of I	1	
	(d)	there is no current in a diode (in the reverse direction) or		
		charge will not flow through a diode (in the reverse direction)		
		allow diode will not conduct (electric charge)		
		do not accept the circuit is not complete		
			1	
		(because) a diode has a (very) high resistance (in the reverse direction)	1	
		Useful power output		
	(e)	Efficiency = Total power input		
	(0)		1	
		Lipsful neuron output		
	(f)	$0.75 = \frac{\text{Useful power output}}{0.24}$		
		0.24	1	
		Useful power output = 0.75×0.24		
			1	
		1 - 1 = 1 = 1 = 0.18 (10)		
		Useful power output = 0.18 (W)	1	
				[11]
		density = mass		
14.	(a)	density = $\frac{11233}{\text{volume}}$		
		or		
		$\rho = \frac{m}{V}$		
		V		

15.

	(b)	$998 = \frac{m}{6\ 500\ 000}$	1	
		$m = 998 \times 6\ 500\ 000$	1	
		<i>m</i> = 6 487 000 000	1	
		$m = 6.487 \times 10^9$ (kg) allow a correct conversion of their calculated value of mass into standard form	1	
	(c)	energy transferred = power × time or		
		E = Pt	1	
	(d)	<i>t</i> = 18 000 (s) or		
		$t = 5 \times 60 \times 60$	1	
		$E = 1.5 \times 10^9 \times 18\ 000$		
		allow a correct substitution using an incorrectly/not converted value of t	1	
		$E = 2.7 \times 10^{13} (J)$		
		allow a correct calculation using an incorrectly/not converted value of t	1	
	(e)	the variation in demand is (much) greater than 1.5×10^9 W		
		allow the increase in demand is greater than the (power) output of the (hydroelectric) power station	1	
		demand remains high for longer than 5 hours allow 04:00 to 16:00 is 12 hours allow 04:00 to 16:00 is greater than 5 hours		
			1	[11]
]	(a)	ammeter and voltmeter symbols correct	1	
		voltmeter in parallel with lamp	1	
		ammeter in series with lamp	1	

(b)

smooth curved line of correct shape

		do not accept a line that becomes horizontal	1
		passing through - 4.0 V, - 0.2 A	
		– 6.0 V, - 0.23 A	
		0.3 Current n amps 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2	
		2 nd mark conditional on scoring 1 st mark	
			1
	(c)	potential difference = current × resistance	
	()	or	
		V = IR	1
			1
	(d)	I = 0.08 (A)	1
			1
		$1.0 = 0.08 \times R$	
		allow 1.0 = their I \times R provided their I has been obtained from the graph	1
		$R = \frac{1.0}{0.08}$	
		allow R = $\frac{1.0}{\text{their I}}$	
			1
		R = 12.5 (Ω)	
		allow an answer consistent with their I	
			1
	(e)	ammeter displays a reading when not connected (to a circuit)	
			1
			[11]
16.	(a)	kg	
		allow kilogram	1
			1
		°C	
		allow degrees Celsius	

1

		1
(c)	$P = 12^2 \times 15$	1
	P = 2160 (W)	1
(d)	The heating element in the kettle takes time to heat up	1
(e)	Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5-6
	Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced 3–4	3-4
	Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1-2
	No relevant content	0
	Indicative content:	
	 measure the mass of water using a balance or measure the volume of water using a measuring cylinder measure the initial temperature of the water pour the water into the kettle put temperature probe in the water or put a thermometer in the water switch kettle on record temperature measure time with a stopclock use an interval of 5 seconds 	
(f)	ΔΘ = 80 (°C)	1
	$E = 0.50 \times 4200 \times 80$ allow E = 0.50 × 4200 × their value of $\Delta \Theta$	1
	E = 168 000 (J)	
	allow an answer consistent with their value of $\Delta \Theta$	

	(g)	m = 0.005 (kg)	1	
		E = 0.005 × 2 260 000		
		this mark may score if m is not/incorrectly converted	1	
		E = 11 300 (J) allow an answer consistent with their value of m	1	[18]
17.	(a)	$R = \frac{36.0}{3}$	1	
		R = 12.0 (Ω)	1	
	(b)	0.1 Ω	1	
	(c)	The measurements are grouped closely together	1	
	(d)	The results give a straight line that would go through the origin.	1	
	(e)	84 (Ω) allow an answer between 83 and 85 (Ω) inclusive	1	
	(f)	decreases	1	
		decreases	1	[8]
18.	(a)	50 Hz	1	
	(b)		1	
	(c)	P = 0.020 × 230	1	
		P = 4.6 (W)		

	(d)	E = 180 × 230	1	
		E = 41 400 (J)	1	
	(e)	Hazard: live wire or high potential difference <i>ignore current in his body</i>	1	
		Risk: electric shock or electrocution <i>allow (electrical) burn</i> <i>allow death (by electric shock)</i> <i>allow 1 mark for hazard and risk in incorrect order</i>		
	(a)	0.08 (s)	1	[8]
19.	(b)	the current goes higher than normal value	1	
		allow the current goes (too) high or the current goes higher than 1.5 A	1	
	(c)	P = 1.5 × 24 P = 36 (W)	1	
		an answer of 36 (W) scores 2 marks	1	
	(d)	LED lamps waste a smaller proportion of the input energy than filament lamps	1	[5]

20.	(a)	correct circuit symbol	1	
		3 cells joined in series in correct orientation		
		e.g.		
		-+ ⊢ ⊢		
		ignore absence of + symbol	1	
	(b)	$R = \frac{12}{1.6}$	1	
		R = 7.5 (Ω)	-	
		an answer of 7.5 (Ω) scores 2 marks	1	
	(c)	4.0 (Ω)		
		allow their answer to part (b) – 3.5 correctly calculated	1	
	(d)	it decreases	1	
		the current would be higher (for the same p.d.) reason only scores if correct box is chosen		
		or more than one path for charge to flow allow current for charge		
		or total resistance is always less than the smallest individual resistance	1	[7]
21.	(a)			[,]
21.	()		1	
	(b)	E = 13 × 230	1	
		E = 2990 (J)		
		an answer 2990 (J) scores 2 marks	1	
	(c)	charge flow = current × time allow Q = It	1	
			•	

(d)	$1.52 = 1 \times 0.40$	1
	$I = \frac{1.52}{0.40}$	
		1
	I = 3.8 (A)	1
	an answer of 3.8 (A) scores 3 marks	1
(e)	E = 0.00175 × 205 000	
		1
	E = 359 (J)	
	allow an answer that rounds to 360 (J) for 2 marks	1
	an answer of 359 (J) scores 2 marks	1
		[9]